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ABSTRACT 

Sandia National Laboratories (SNL) is in the process of creating Inspecta (International Nuclear 

Safeguards Personal Examination and Containment Tracking Assistant), an Artificial Intelligence 

(AI)-powered smart digital assistant (SDA) with robotic capabilities, aimed at enhancing the 

effectiveness, efficiency, and safety of international nuclear safeguards inspections. This innovative 

tool is designed to assist inspectors on-site by supporting or automating tasks that are typically 

mundane, hazardous, or susceptible to errors. In 2021, the development team established the 

specifications for Inspecta by analyzing International Atomic Energy Agency (IAEA) documents and 

consulting with former IAEA inspectors and subject matter experts. This process involved aligning 

in-field inspection tasks with existing commercial or open-source technologies to outline a roadmap 

for the initial prototype of Inspecta, while also identifying areas needing further research and 

development. From 2022 – 2024, the focus has shifted to integrating a critical inspection activity, the 

examination of seals, into an early version of Inspecta. This has involved developing both the software 

and hardware capabilities necessary for this task. This document outlines the ongoing advancements 

in Inspecta's functionalities, specifically those supporting the seal examination process. 

INTRODUCTION 

The IAEA Department of Safeguards is responsible for verifying international nuclear safeguards 

agreements. The mission of international safeguards is “to deter the spread of nuclear weapons by the 

early detection of the misuse of nuclear material or technology. This provides credible assurances that 

States are honouring their legal obligations that nuclear material is being used only for peaceful 

purposes” [1]. The implementation of international safeguards is unique for different states, as they 

are based on sovereign agreements between a State and the IAEA, as well as from facility-to-facility 

as determined through a safeguards agreement’s facility attachment. Safeguards activities at a nuclear 

facility are also based on state factors and the IAEA’s technical objectives as defined in the Annual 

Implementation Plan. 

Despite the variability in their application, inspectors consistently perform a range of common tasks, 

including auditing facility records, inspecting and maintaining safeguards equipment, taking 

measurements and samples, examining and verifying seals, counting items, reviewing surveillance 
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footage, confirming design information, and monitoring for any discrepancies. These tasks can be 

both mentally and physically demanding, making them prone to human error; further, some tasks 

involve activities in hazardous environments. Moreover, the workload of international safeguards 

inspectors is on the rise due to several factors: the increasing number and variety of nuclear facilities 

under safeguards, the growing global inventory of special nuclear materials due to the longevity of 

safeguards for waste products and spent fuel, and a shift in the inspectors' role from auditing to more 

investigative duties. Despite these growing responsibilities, inspectors have limited time at facilities 

and must perform their duties as efficiently, effectively, and safely as possible. Efforts to enforce 

obligations associated with the Additional Protocol (AP) further compounds their workload. 

AI and Machine Learning (ML) are becoming increasingly integrated into daily life, as seen in 

technologies like automated driver-assistance systems, personalized online shopping 

recommendations, voice-controlled smart home devices, and AI-powered vacuum cleaners, as well 

as SDAs like Amazon’s Alexa1. Applying these advanced technologies to the field of international 

nuclear safeguards could significantly enhance the efficiency, effectiveness, and safety of inspection 

activities, particularly those that are repetitive, hazardous, and error-prone. 

To address the evolving needs of safeguards inspectors, we are developing a prototype AI-enabled 

SDA with robotic support named Inspecta. Inspecta is designed to assist with general tasks, such as 

note taking, and more specialized tasks, such as reading seal numbers through optical character 

recognition (OCR). It will be housed in a compact, portable, and wearable device (with the current 

version residing on a Google Pixel 6 smart phone), primarily interacting with inspectors through voice 

commands and, when necessary, displaying information visually. We have assumed that there will be 

no communication to the Internet or cellular network from within the facility, and thus all software 

and algorithms run on-device. It is important to note that Inspecta is intended to complement human 

inspectors, not replace them.  

In this paper, we will share details on Inspecta technical capabilities (“skills”) that primarily assist 

inspectors in a seal examination task, selected to demonstrate progress towards a relevant high-impact 

task. Skills required for the seal examination task include speech recognition, speech synthesis, wake 

word, OCR (of both seal/container numbers and documents), information recall, robotic autonomy, 

object detection, segmentation, pose estimation, and mapping. We note that the seal examination task 

was selected early in the project after a literature review of IAEA inspection tasks and IAEA 

publications identifying challenges [2, 3, 4, 5], and from interviews with former IAEA inspectors and 

subject matter experts.    

TASK DESCRIPTION AND INSPECTA ASSISTANCE  

The seal examination task is important but tedious for IAEA inspectors. In one application, tamper-

indicating metal CAP seals (Figure 1) with a numeric identifier are attached to containers after the 

 
1 https://developer.amazon.com/en-US/alexa  

https://developer.amazon.com/en-US/alexa


3 
 

contents have been verified. An inspector will be escorted by facility personnel to the material holding 

location, find seals to examine, compare the seal number on the item and its container with the seal 

number and container number on a paper list, and mark that the seal has been examined and 

confirmed. The inspector also physically inspects the seal and seal wire for signs of tampering and 

pulls on the wire and seal to ensure proper connection to the container. A small set of seals may be 

selected for removal and verification at the IAEA headquarters; this selection process is performed 

using a statistical algorithm that informs how many and which seals should be removed and replaced. 

 

Figure 1: CAPS metal seal, image: IAEA, 2020. 

 

Examining seals with the Inspecta app on the Google smart phone includes the following steps and 

skills (in parentheses):  

• Ingest seal, container list and documents prior to inspection (OCR) 

• Inspector escorted to seal/s location 

• Inspector opens Inspecta app and asks to start seal examination (speech recognition and 

synthesis) or manually selects the task on the smart phone screen 

• Inspecta uses OCR to capture seal and container numbers and they are automatically marked 

as examined in Inspecta app (task tracking) 

• Inspector can ask Inspecta for information, i.e., “Inspecta, what is a significant quantity of 

nuclear material?” (information recall) 

• Inspector can add a label to the Spot-generated map if desired (to pinpoint seal location, for 

example) (mapping) 

 

Spot can also separately perform seal examination and steps and skills required are:  

• Inspector asks Spot to perform seal examination (speech recognition, autonomy) 

• Spot locates a container (object detection) 

• Spot traverses room to container and locates a seal on the container (autonomy, object 

detection) 

• Spot estimates the pose required for the manipulator arm camera to best align with seal number 

and acquires images of the seal (segmentation, pose estimation) 

• Spot sends seal numbers examined to Inspecta (Spot/Inspecta interface) 
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INSPECTA APPLICATION 

Before developing the Inspecta architecture, key considerations such as security, privacy, usability, 

and the adaptability of existing algorithms, libraries, and software components were prioritized. The 

selection of hardware with necessary input/output capabilities and sensors was also crucial and led to 

the selection on the Google Pixel 6 phone. Initial considerations included using existing platforms 

like Alexa, Siri, or the open-source Mycroft2 as a foundation. However, due to the proprietary nature 

and cloud-based operation of Alexa and Siri, along with the lack of reliable wireless connections in 

nuclear facilities, these options were deemed unsuitable. Mycroft's limited documentation and 

available skills further led to the decision to develop the SDA platform from scratch. 

A significant aspect of Inspecta's development is the emphasis in on-device learning due to potential 

lack of communications available within a nuclear facility. The Open Neural Network Exchange 

(ONNX) API is utilized for developing models compatible with Inspecta's code base, allowing models 

built in PyTorch and TensorFlow to be converted to ONNX format for deployment across various 

platforms. Moreover, model quantization is employed to enhance performance on embedded and 

mobile devices by reducing the precision of the machine learning algorithms' mathematical 

operations. 

Code for the Inspecta app was originally developed with Xamarin to allow multiple end-user 

platforms (iOS, Android, Windows, etc.) since the team was uncertain about which platform might 

ultimately be deployed. Xamarin is no longer supported, and all code has been migrated to .NET 

MAUI; however, the capability to deploy to multiple platforms remains. The Inspecta app has been 

built using a commercial UI kit such that project resources could be spent on skill development rather 

than app development.  Once modules are developed offline, they are integrated into the phone UI. 

Figure 2 shows example screen shots of the note taking and seal examination modules.  

 

Figure 2: Inspecta app, built in a UI kit. (Left) Google Pixel 6 screen with Inspecta app in center right, 
(Left Center) Inspecta’s main screen, (Right Center) Note taking interface, (Right) Seal examination 

module. 

 
2 https://mycroft.ai/about-mycroft/  

https://mycroft.ai/about-mycroft/
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The main capabilities to-date within the Inspecta app include speech synthesis (also called text-to-

speech), speech recognition (also called speech-to-text), wake word, seal examination, note taking, 

document OCR, information recall and maps. Speech synthesis uses native Android services, while 

the other modules have required development and are described next.  

Speech recognition utilizes Meta's Wav2Vec2 [6] algorithm, where the waveform is initially captured 

through an on-device microphone. This waveform is then converted and preprocessed before being 

fed into Wav2Vec2, which outputs the estimated text. The predicted text is subsequently compared 

against a set of possible commands using the Levenshtein distance to evaluate similarity. If the 

distance is too high for any of the given commands, indicating a significant discrepancy, it is inferred 

that a question has been posed, triggering the information recall module.  

The wake word capability (“Hey Inspecta” – triggering the system to begin listening) has gone 

through many iterations to improve robustness. The current approach uses a custom classification 

model based on openWakeWord3 that provides a Softmax score for the presence of “Hey Inspecta” 

in an audio clip. The model was trained on 100k+ synthetic samples mixed with noise and background 

sounds.  

When an inspector says “Hey Inspecta, start seal examination,” the Inspecta app opens the phone’s 

video camera and begins a two-stage OCR process (text detection and recognition based on CRAFT 

[7] and a CRNN [8]) to eventually acquire the seal and container numbers (Figure 3) and correlate 

them with a list of seals/containers previously ingested into the app. The app keeps track of which 

seals and containers have been examined (Figure 2, Right).   

 

Figure 3: OCR process for acquiring seal and container numbers.  

 

Document scanning, using OCR, is a process that captures an image of a document and transcribes 

any text it contains. This function is particularly valuable for tasks such as scanning lists of seals and 

corresponding containers for later seal examination or capturing documents for the information recall 

 
3 https://github.com/dscripka/openWakeWord  

https://github.com/dscripka/openWakeWord
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module. However, document scanning introduces challenges not encountered in the seal examination 

task, including the need for higher resolution images to discern numerous words on a page and the 

issue of dealing with warped or skewed pages, which can affect performance and text ordering. Unlike 

seal examination, ensuring the correct sequence of words from left to right and top to bottom is crucial 

for document scanning. Document scanning is not a real-time task; it requires capturing a high-

resolution image for accuracy, with the user toggling settings to determine if bounding box ordering 

should be performed. Document scanning uses a more computationally intensive algorithm, 

DeepSolo [9].  

With information recall, an inspector can ingest needed documents into Inspecta prior to an 

inspection, ask natural language questions, and receive spoken information back. As an example, we 

ingested the 2022 Safeguards Glossary into Inspecta and then asked “Hey Inspecta, what is the 

definition of a significant quantity?” Inspecta then verbally responds, “the approximate amount of 

nuclear material for which the possibility of manufacturing a nuclear explosive device cannot be 

excluded.” The challenge with information recall for international nuclear safeguards is the lack of 

nuclear influenced datasets. We have collected the most prevalent nuclear related keywords using 

1,000 Office of Scientific and Technical Information (OSTI) abstracts related to nuclear safeguards 

to replace words at random for both the training and testing of Stanford Question Answer Dataset 

(SQuAD) datasets [10]. This method was inspired by the “Salt and Pepper” technique [11] used by 

AJAX (Artificial Judgement Assistance from teXt) to generate a nuclear domain specific corpus. 

Currently, SentencePiece, a text tokenizer, is being used to create new vocabulary files to best match 

the new nuclear training corpus. 

Note taking is straight forward and is shown in Figure 2. We won’t detail much of maps in this section, 

as maps are acquired via Spot robot – however, the concept is that an image of the Spot-acquired 2D 

map is transmitted to the Inspecta app, where an inspector can open and view the map (currently) and 

eventually drop labels at locations of interest.  

ROBOTIC AUTONOMY 

Boston Dynamics’ Spot robot was acquired in September 2022 to provide a physical implementation 

of Inspecta, especially for tasks that are tedious or hazardous. The benefits of incorporating robotic 

support are (1) reduced radiation exposure to inspectors, (2) ability to image difficult-to-access 

locations via the camera within Spot’s manipulator arm, and (3) ability to perform tedious and 

repetitive tasks. While the commercially available Spot robot comes with a significant level of 

capability, additional skill development is required for our application, namely, autonomy, object 

detection, segmentation, pose estimation for seal OCR and gripping, and map acquisition.  

The Spot robot can natively be controlled using (1) a joystick-like tablet with an operator selecting 

functions like walking, crawling, sitting, and object manipulation or (2) “Autowalk” which enables 

the operator to record a manually-controlled mission and replay it. Neither of these are ideal for 

safeguards inspections as we don’t wish to add tasks for inspectors (operating a robot) and Autowalk 
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requires a static environment (robot performs the same activity for items in the same place 

repeatedly). Therefore, we are developing a robotic autonomy stack such that an inspector can 

command Spot to perform a task, such as seal examination, with Spot able to autonomously perform 

the task. High level tasks, like seal examination, are broken down into sub-behaviors and sub-trees 

for additional modularity and reactivity, e.g., having Spot undock from its power source, stand, look 

around a room, traverse the room, perform an action like taking a picture and return to the dock. An 

informed search behavior using object detection and LiDAR will allow us to explore an unknown 

area and locate a container after being escorted by an inspector to a starting location. The modular 

nature of the behavior trees allows for greater reactivity to changes occurring around the robot. For 

example, if a container is moved while Spot is attempting to navigate towards it, this will result in 

Spot replanning to move towards the container using a new trajectory. 

More specifically, the team has created multiple action primitives for the Spot robot using the Spot 

software development kit (SDK), with plans to expand this suite throughout the project. These 

primitives are being tested in a simulated inspection environment within the AutonomyNM Testbed4, 

using 55-gallon drums with metal cup seals as targets for Spot to identify and process using OCR 

technology. Additionally, capabilities are being developed for Spot to follow inspectors wearing 

fiducial markers, with ongoing research into how to securely integrate these markers into clothing to 

prevent unauthorized control. The introduction of behavior trees has been well-received, leading to 

the open-sourcing of the "spot_bt5" package, fostering transparency and community involvement. 

Furthermore, in collaboration with Boston Dynamics' efforts to enhance Spot's operability through 

ROS 2 [12], a widely used robotics middleware, the team has migrated our work to ROS 2 under the 

name "spot_bt_ros6." Both packages are open-source and available for any user to download and 

develop around their autonomy needs.   

OBJECT DETECTION 

Object detection for this project employs the YOLOv5 algorithm from ultralytics7, running on a Jetson 

graphics processing unit (GPU) mounted on Spot. Initially, the model was pretrained using the 

COCO8 dataset, which comprises a wide range of everyday objects, to establish a broad visual 

understanding. To enhance the system’s utility for our needs, Limbo9 synthetic data is then utilized 

for transfer learning. The Limbo dataset consists of over 1 million synthetic labeled images of various 

containers, including UF6 cylinders (30B, 48X, 48Y, 48G types), wine barrels, and 55-gallon drums, 

among other objects. Finally, to improve the model's performance further, additional datasets 

specifically focused on 55-gallon drums and metal cup seals are being compiled and labeled in our 

lab. This final dataset is continually trained and tested on to ensure reliability of the object detection 

 
4 https://autonomy.sandia.gov/autonomynm 
5 https://github.com/sandialabs/spot_bt  
6 https://github.com/sandialabs/spot_bt_ros  
7 https://github.com/ultralytics/yolov5  
8 https://cocodataset.org/#home  
9 https://limbo-ml.readthedocs.io/ 

https://autonomy.sandia.gov/autonomynm
https://github.com/sandialabs/spot_bt
https://github.com/sandialabs/spot_bt_ros
https://github.com/ultralytics/yolov5
https://cocodataset.org/
https://limbo-ml.readthedocs.io/
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skill. This progression in training data from COCO, to Limbo, to in house is shown in Figure 4. 

Results from the drum and seal object detection system on test data are shown in Figure 5. 

 

Figure 4: Progression of object detection training. (Left) COCO dataset for common objects, (Center) 
Limbo dataset for UF6 and other cylinders, (Right) 55-gallon drums and metal cup seals at the 

AutonomyNM testbed. 

 

  

Figure 5: Test results for object detection of 55-gallon drums and metal cup seals, with confidence 
level displayed.  

 

Our team has leveraged several annotation tools while compiling object detection datasets. LabelMe10 

lets the user draw bounding boxes on individual photos. This approach is simple but time consuming. 

LabelStudio11 lets the user draw bounding boxes for key frames in a video and interpolate between 

them, which is much more time efficient than labeling individual photos. However, LabelStudio does 

not output video data in a YOLOv5 compatible format, so we had to write a conversion script. Lastly, 

RoboFlow12 lets the user automatically annotate images with a foundation model such as Grounding 

 
10 https://pypi.org/project/labelme/  
11 https://labelstud.io/  
12 https://blog.roboflow.com/grounding-dino-zero-shot-object-detection/  

https://pypi.org/project/labelme/
https://labelstud.io/
https://blog.roboflow.com/grounding-dino-zero-shot-object-detection/
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DINO13. Grounding DINO is a vision-language model that can perform open set object detection of 

arbitrary text queries zero shot, i.e., without any query specific training. While traditional object 

detection systems are trained to identify a specific set of objects, Grounding DINO attempts to 

identify any object associated with a text query. Grounding DINO generated training data is shown 

in Figure 6. Note this model is too slow to run in real time, too computationally expensive to run on 

an edge device, and fails to draw good bounding boxes in many circumstances. Despite these flaws 

it can powerfully accelerate dataset generation. 

 

Figure 6. Grounding DINO auto labelled training data. 
 

Finally, RoboFlow allows users to upload their own models and use them to auto label additional 

data. With this technique we can progressively bootstrap a more and more thoroughly trained object 

detection system. 

OBJECT SEGMENTATION 

Another visual skill generally useful in robotics is segmentation. Rather than drawing bounding boxes 

around objects, segmentation seeks to categorize individual pixels into groups or instances. This is 

useful when trying to visually understand parts of a scene that cannot easily be captured by a bounding 

box, such as which areas of the visual field are walkable, and which are hazardous. It is also useful 

for isolating relevant point cloud data from RGB-Depth cameras, which will be discussed next. 

A common ML algorithm for segmentation is Mask-RCNN14. A more recent foundation model for 

segmentation is Meta’s Segment Anything Model15 (SAM). Some results from these models are 

shown in Figure 7. 

 
13 https://arxiv.org/abs/2303.05499  
14 https://arxiv.org/abs/1703.06870  
15 https://arxiv.org/abs/2304.02643  

https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/2304.02643
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Figure 7. Pretrained segmentation results. Mask-RCNN in the middle. Segment Anything Model on 
the right. 

 

Pretrained Mask-RCNN successfully segments out the humans and a few odd objects in the scene but 

struggles to identify Spot as a single object. This is likely because robotic dogs were not in the Mask-

RCNN training data. However, Mask-RCNN’s performance could certainly be improved by 

collecting task specific training data and fine tuning. Meta’s SAM does very well on this example 

with no fine tuning. Foundation models, by definition, have been trained on such vast data that they 

generalize well to new situations, which explains SAM’s strong performance here. 

 

Figure 8. SAM segmentation from bounding boxes for drums and seals. 

 

SAM can also segment out an object given only a bounding box around it, such as the bounding boxes 

produced by YOLO. This is shown in Figure 8. While SAM performs incredibly well, it is too 

computationally intensive to run locally onboard Spot. However, this YOLO-SAM pipeline can be 

used to auto generate segmentation training data for smaller models such as Mask-RCNN. Generating 

segmentation datasets is labor intensive without this auto labeling pipeline, as object perimeters are 

harder to label than simple bounding boxes. 
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POSE ESTIMATION 

As can be seen in Figure 4, Figure 5, and Figure 6, metal cup seals on containers are not always at 

convenient angles for reading the inscription on their surface. Spot needs to be able to estimate the 

orientation of the seal and position its manipulator arm perpendicular to the face of the seal. This will 

enable clear photography of the inscription as well as grasping. Grasping may be implemented in 

future work to ensure metal cup seals are properly attached to their containers. The team is currently 

working on “pose estimation” for Spot to perform seal examination most effectively. 

Pose estimation falls into the category of geometric or 3D computer vision, which is typically 

performed with depth sensor data in addition to traditional red-green-blue (RGB) images. RGB plus 

Depth (RGBD) sensors based on projected infrared stereo vision are common in this domain. Spot 

has five such sensors built into its body, and the team is considering mounting an additional RGBD 

sensor to its manipulator arm.  

An example of a depth channel image is shown in Figure 9 on the left. This depth scan contains a 55-

gallon test drum with a stuffed animal on top in the foreground in green, a human engineer in the 

middle-ground in blue, and patches of floor and ceiling in the background in red. It is difficult to do 

anything useful on the full point cloud. Conveniently, the segmentation techniques presented in the 

previous section can isolate the point clouds of specific objects. Segmented out sections of the point 

cloud can be useful for estimating the exact spatial location of drums and nearby humans, or for 

estimating the orientation of seals. Once the seal point cloud is isolated from the background, 

algorithms such as Iterative Closest Point (ICP) can be used to match the point cloud data to a known 

model for the seal, thus inferring its orientation. An initial implementation of this ICP16 approach is 

shown on simulated sensor data in Figure 9 on the right. The blue ‘model’ point cloud is generated 

from a CAD file of the seal. The orange ‘scan’ point cloud is a simulated sensor scan. The green ‘scan 

aligned’ point cloud is the sensor scan after running ICP and solving for seal orientation. 

 

Figure 9. (Left) Depth channel data from an RGBD sensor. (Right) Initial implementation of ICP for 
seal pose estimation on simulated sensor data. 

 
16 https://pypi.org/project/simpleicp/  

https://pypi.org/project/simpleicp/
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As an alternative to mounting an additional RGBD sensor, the team considered structure from motion 

algorithms using only the RGB camera built into Spot’s manipulator arm. While theoretically 

possible, as humans estimate depth with our built in RGB sensors, it proved difficult to get good 

results with this method using existing open-source software such as OpenSfM17. Segmenting out 

individual object point clouds would also be more challenging with this method, as there is no one-

to-one mapping from already segmented RGB space, to point cloud space. 

Lastly, the team is considering modern deep learning alternatives to the scan, segment, ICP pipeline 

described above. PoseCNN18 is a powerful and popular deep learning-based approach for six degree 

of freedom (position and orientation) object tracking based only on RGB data. It was published in 

2017. However, this method only works on a closed set of objects used in training, and it is difficult 

to generate additional inspection specific data in six degrees of freedom. FoundationPose19, published 

in 2024, is designed to work on objects it was not explicitly trained on, making it an open set 6D 

object tracker. We have not yet tested this approach for our applications. 

MAPPING 

Finally, the team is developing the ability for Spot to acquire point clouds using an attached Ouster 

OS1 LiDAR payload (Figure 10) for generation of 2D and 3D facility maps. Once Spot’s LiDAR 

collects point cloud data, the data is processed using mapping algorithms on the Jetson GPU. An 

image of a 2D map is generated and sent to the Inspecta app. The team is progressing with the 

implementation of the Simultaneous Localization and Mapping (SLAM) algorithm to compile and 

produce 3D point cloud environments that can be used to either reconstruct 3D mesh environments 

(like virtual environments) or be used for design information verification with subsequent data 

collections. Additionally, the SLAM algorithm will provide enhanced navigation information for Spot 

to make informed decisions while attempting to locate a container in an unknown environment. 

 

Figure 10: Spot with Ouster OS1 LiDAR payload. 

 
17 https://github.com/mapillary/OpenSfM  
18 https://arxiv.org/abs/1711.00199  
19 https://nvlabs.github.io/FoundationPose/  

https://github.com/mapillary/OpenSfM
https://arxiv.org/abs/1711.00199
https://nvlabs.github.io/FoundationPose/
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SUMMARY AND NEXT STEPS 

An AI-enabled SDA with Spot robotic support can be integrated into the process of international 

nuclear safeguards inspections to assist with mentally and physically challenging tasks and those 

prone to human error to increase the effectiveness, efficiency, and safety of inspections. In this work, 

we have identified and down-selected a safeguards task, seal examination, that is tedious and prone 

to error to demonstrate Inspecta’s capabilities and build skills that can be used for completing 

additional tasks in the future. We have developed various skills including speech 

synthesis/recognition, OCR, task tracking, information recall, wake word, document scanning using 

OCR, note taking, Spot autonomy, object detection, object segmentation, pose estimation, and 

mapping. Possible future work includes (1) improving reliability of previously developed skills like 

OCR and information recall, (2) advancing Spot’s autonomy stack through further integration of the 

other skills (object detection, segmentation, pose estimation, mapping), and (3) adding a new task, 

spent fuel verification, that will utilize the existing skills and require development of new skills. The 

robotics team intends to extend our work to deep imitation learning [13] for generalizable control 

when attempting to tug on a seal given how they are rarely uniform in their installation on a container. 
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